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Abstract: We propose a new global and fully inclusive variable ŝ
1/2
min for determining the

mass scale of new particles in events with missing energy at hadron colliders. We define ŝ
1/2
min

as the minimum center-of-mass parton level energy consistent with the measured values of the

total calorimeter energy E and the total visible momentum ~P . We prove that for an arbitrary

event, ŝ
1/2
min is simply given by the formula ŝ

1/2
min =

√

E2 − P 2
z +

√

6E2
T + M2

inv, where Minv is

the total mass of all invisible particles produced in the event. We use tt̄ production and several

supersymmetry examples to argue that the peak in the ŝ
1/2
min distribution is correlated with

the mass threshold of the parent particles originally produced in the event. This conjecture

allows an estimate of the heavy superpartner mass scale (as a function of the LSP mass) in a

completely general and model-independent way, and without the need for any exclusive event

reconstruction. In our SUSY examples of several multijet plus missing energy signals, the

accuracy of the mass measurement based on ŝ
1/2
min is typically at the percent level, and never

worse than 10%. After including the effects of initial state radiation and multiple parton

interactions, the precision gets worse, but for heavy SUSY mass spectra remains ∼ 10%.
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1. Introduction

The ongoing Run II of the Fermilab Tevatron and the imminent run of the Large Hadron

Collider (LHC) at CERN are on the hunt for new physics beyond the Standard Model (BSM)

at the TeV scale. Arguably the most compelling phenomenological evidence for BSM particles

and interactions at the TeV scale is provided by the dark matter problem [1], whose solution

requires new particles and interactions BSM. A typical particle dark matter candidate does

not interact in the detector and can only manifest itself as missing energy. At hadron colliders,

where the total center of mass energy in each event is unknown, the missing energy is inferred

from the imbalance of the total transverse momentum of the detected visible particles, and

is commonly referred to as “missing transverse energy” (MET). The dark matter problem

therefore greatly motivates the study of MET signatures at the Tevatron and the LHC [2].

While the MET class of BSM signatures is probably the best motivated one from a

theoretical point of view, it is also among the most challenging from an experimental point

of view. On the one hand, to get a good MET measurement, one needs to have all detector

components working properly, since the mismeasurement of any one single type of objects

would introduce fake MET. In addition, there are complications from cosmics, pile-up, beam

halo, noise, etc. Therefore, establishing a MET signal due to some new physics is a highly

non-trivial task [2, 3].

At the same time, interpreting a missing energy signal of new physics is quite challenging

as well. The main stumbling block is the fact that we are missing some of the kinemati-

cal information from each event, namely the energies and momenta of the missing invisible

particles. What is worse, a priori we cannot be certain about the exact number of missing
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Figure 1: The generic event topology under consideration in this paper. Black (red) lines correspond

to SM (BSM) particles. The solid lines denote SM particles Xi, i = 1, 2, . . . , nvis, which are visible

in the detector, e.g. jets, electrons, muons and photons. The SM particles may originate either from

initial state radiation (ISR), or from the hard scattering and subsequent cascade decays (indicated

with the green-shaded ellipse). The dashed lines denote neutral stable particles χi, i = 1, 2, . . . , ninv,

which are invisible in the detector. In general, the set of invisible particles consists of some number

nχ of BSM particles (indicated with the red dashed lines), as well as some number nν = ninv − nχ of

SM neutrinos (denoted with the black dashed lines). The identities and the masses mi of the BSM

invisible particles χi, (i = 1, 2, . . . , nχ) do not necessarily have to be all the same, i.e. we allow for

the simultaneous production of several different species of dark matter particles. The global event

variables describing the visible particles are: the total energy E, the transverse components Px and

Py and the longitudinal component Pz of the total visible momentum ~P . The only experimentally

available information regarding the invisible particles is the missing transverse momentum 6~PT .

particles in the event, or their identity, e.g. are they SM neutrinos, new BSM dark matter

particles, or some combination of both? These difficulties are illustrated in Fig. 1, where we

show the generic topology of the missing energy events that we are considering in this paper.

As can be seen from the figure, we are imagining a completely general setup – each event

will contain a certain number nvis of Standard Model (SM) particles Xi, i = 1, 2, . . . , nvis,

which are visible in the detector, i.e. their energies and momenta are in principle measured.

Examples of such visible SM particles are the basic reconstructed objects, e.g. jets, photons,

electrons and muons. The visible particles Xi are denoted in Fig. 1 with solid black lines
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and may originate either from initial state radiation (ISR), or from the hard scattering and

subsequent cascade decays (indicated with the green-shaded ellipse). On the other hand,

the missing energy 6ET (or more appropriately, the missing transverse momentum 6 ~PT ) will

arise from a certain number ninv of stable neutral particles χi, i = 1, 2, . . . , ninv, which are

invisible in the detector. In general, the set of invisible particles in any event will consist

of a certain number nχ of BSM particles (indicated with the red dashed lines), as well as a

certain number nν = ninv − nχ of SM neutrinos (denoted with the black dashed lines). The

missing energy measurement alone does not tell us the number ninv of missing particles, nor

how many of them are neutrinos and how many are BSM (dark matter) particles. Notice

that in this general setup the identities and the masses mi of the BSM invisible particles χi,

(i = 1, 2, . . . , nχ) do not necessarily have to be all the same, i.e. we allow for the simultaneous

production of several different species of dark matter particles [4–7]. On the other hand, we

shall always take the neutrino masses to be zero

mi = 0, for i = nχ + 1, nχ + 2, . . . , ninv . (1.1)

Most previous studies of MET signatures have assumed a particular BSM scenario and

investigated its consequences in a rather model-dependent setup. The results from those

studies would seem to indicate that in order to make any progress towards determining what

kind of new physics is being discovered, and in particular towards mass and spin measure-

ments, one must attempt at least some partial reconstruction of the events, by assuming a

particular production mechanism, and then identifying the decay products from a suitable

decay chain [8–56]. In doing so, one inevitably encounters a combinatorial problem whose

severity depends on the new physics model and the type of discovery signature. For example,

complex event topologies with a large number nvis of visible particles, and/or a large number

of jets but few or no leptons, will be rather difficult to decipher, especially in the early data.

Therefore, it is fair to ask whether one can say something about the newly discovered physics

and in particular about its mass scale, using only inclusive and global1 event variables, before

attempting any event reconstruction.

In this paper, therefore, we shall concentrate on the most general topology exhibited

in Fig. 1 and we shall make no further assumptions about the underlying event structure.

For example, we shall not specify anything about the production mechanism. In particular,

we shall not make the usual assumption that the BSM particles are pair produced and,

consequently, that there are two and only two BSM decay chains resulting in nχ = 2 identical

dark matter particles with equal masses m1 = m2. Accordingly, we shall not make any

attempt to group the observed SM objects Xi, i = 1, 2, . . . , nvis, into subsets corresponding

to individual decay chains. Furthermore, we shall in principle allow for the presence of SM

neutrinos which could contribute towards the measured MET. In this sense our approach will

be completely general and model-independent.

Given this very general setup, our first goal will be to define a global event variable

which is sensitive to the mass scale of the particles that were originally produced in the

1Here and throughout the paper, we use the term “global” from an experimentalist’s point of view. Strictly

speaking, the detectors are not fully hermetic, hence no variable can be truly global in the theorist’s sense.

– 3 –



event of Fig. 1, or more generally, to the typical energy scale of the event. Since we are

not attempting any event reconstruction, this variable should be defined only in terms of

the global event variables describing the visible particles Xi, namely, the total energy E

in the event, the transverse components Px and Py and the longitudinal component Pz of

the total visible momentum ~P in the event. In the same spirit, the only experimentally

available information regarding the invisible particles that we are allowed to use is the missing

transverse momentum 6 ~PT (see Fig. 1). Of course, the missing transverse momentum 6 ~PT is

related to the transverse components Px and Py of the total visible momentum ~P as

6~PT = − (Px~ex + Py~ey) = −~PT , (1.2)

so that we can use 6 ~PT and ~PT ≡ Px~ex + Py~ey interchangingly. Then, the commonly used

missing energy 6ET is nothing but the magnitude 6PT of the measured missing momentum 6~PT :

6ET ≡ 6PT = PT =
√

P 2
x + P 2

y . (1.3)

The main idea of this paper is to propose a new global and inclusive variable ŝmin defined

as follows. ŝmin is simply the minimum value of the parton-level Mandelstam variable ŝ which

is consistent with the observed set of E, Pz and 6PT in a given event2. Correspondingly, its

square root ŝ
1/2
min is the minimum parton level center-of-mass energy, which is required in

order to explain the observed values of E, Pz and 6ET . Our main result, derived below in

Section 2, is the relation expressing the so defined ŝ
1/2
min in terms of the measured global and

inclusive quantities E, Pz and 6ET . In Section 2 we shall prove that ŝ
1/2
min is always given by

the formula

ŝ
1/2
min(Minv) ≡

√

E2 − P 2
z +

√

6E2
T + M2

inv , (1.4)

where the mass parameter Minv is nothing but the total mass of all invisible particles in the

event:

Minv ≡
ninv
∑

i=1

mi =

nχ
∑

i=1

mi , (1.5)

and the second equality follows from the assumption of vanishing neutrino masses (1.1).

As can be seen from its defining equation (1.4), the variable ŝ
1/2
min is actually a function of

the unknown mass parameter Minv. This is the price that we will have to pay for the model-

independence of our setup. This situation is very similar to the case of the Cambridge MT2

variable [9,14,34–37,45,52,53] and its various cousins [33,38,39,41,42,46,48,50,54,55], which

are also defined in terms of the unknown test mass of a missing BSM particle. However,

the Cambridge MT2 variable is a much more model-dependent quantity, since it requires

the identification of two separate decay chains in the events. Furthermore, in some special

cases (more precisely, those of M
(n,n,n−1)
T2 in the language of [54]) MT2 is essentially a purely

transverse quantity, and in this sense would not make full use of all of the available information

2In what follows, instead of 6PT we choose to use the more ubiquitous 6ET , since the two are essentially the

same, see (1.3).
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in the event. In contrast, our variable ŝ
1/2
min is defined in a fully inclusive manner, and uses

the longitudinal event information as well.

After deriving our main result (1.4) in Section 2, we devote the rest of the paper to

studies of its properties. For example, in Section 3 we shall compare ŝ
1/2
min to some other

global and inclusive variables which have been considered as measures of the mass scale of

the new particles: HT [12], the total visible invariant mass M [2], the missing transverse

energy 6ET , the total energy E, and the total transverse energy ET in the event. We shall use

several examples from SM tt̄ production, as well as supersymmetry (SUSY), to demonstrate

that among all those possibilities, the variable ŝ
1/2
min is the one which is best correlated with

the mass scale of the produced particles, even when we conservatively set the unknown mass

parameter Minv to zero. In Section 4 we shall investigate the dependence of the ŝ
1/2
min variable

on the a priori unknown mass parameter Minv, using conventional SUSY pair-production for

illustration. We shall find a very interesting result: when the parameter Minv happens to be

equal to its true value, the peak in the ŝ
1/2
min distribution is surprisingly close to the SUSY

mass threshold. This correlation persists even when the two SUSY particles produced in the

hard scattering are very different, for example, in associated gluino-LSP production. This

observation opens up the possibility of a new, all inclusive and completely model-independent

measurement of the mass scale of the new (parent) particles produced in the event: we

simply read off the location of the peak in the ŝ
1/2
min distribution, and interpret it as the

mass threshold of the parent particles. Because of the intrinsic dependence on the unknown

mass parameter Minv, the method only provides a relation between the mass of the parent

particle and the mass of the dark matter particle, just like the method of the Cambridge MT2

variable [9]. However, unlike the MT2 endpoint measurements, our measurement is based on

an all-inclusive global variable, and does not require any event reconstruction at all. It is

worth noting that since we are correlating a physics parameter to the peak, rather than the

endpoint of an observed distribution, our measurement will be less prone to errors due to finite

statistics, detector resolution, finite width effects etc., which represents another important

advantage of the ŝ
1/2
min variable. The accuracy of our new mass measurement method is

investigated quantitatively in Sections 5 and 6. Our discussion in Sections 3, 4 and 5, while

demonstrating the usefullness of the ŝ
1/2
min variable, will be limited to an ideal case, where

the effects from initial state radiation (ISR), multiple parton interactions (MPI) and pile-up

are negligible. In Section 6 we investigate the adverse effect of those latter factors on the

ŝ
1/2
min measurement in a realistic experimental environment and discuss different approaches

for minimizing their impact. In Section 7 we summarize our main points and conclude.

2. Derivation of ŝ
1/2
min

In this section we shall derive the general formula (1.4) advertised in the Introduction. Before

we begin, let us introduce some notation. We shall denote the three-momenta of the invisible

particles χi, i = 1, 2, . . . , ninv, with ~pi, or in components pix, piy and piz. As usual, we

choose the z-axis along the beam direction, so that pix and piy are the components of the
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transverse momentum ~piT . As already mentioned in the Introduction, the masses of the

invisible particles will be denoted by mi.

Our starting point will be the expression for the parton-level Mandelstam variable ŝ for

the event depicted in Fig. 1:

ŝ =

(

E +

ninv
∑

i=1

√

m2
i + ~p 2

i

)2

−
(

~P +

ninv
∑

i=1

~pi

)2

=

(

E +

ninv
∑

i=1

√

m2
i + ~p 2

iT + p2
iz

)2

−
(

~PT +

ninv
∑

i=1

~piT

)2

−
(

Pz +

ninv
∑

i=1

piz

)2

. (2.1)

The invisible particle momenta ~pi are not measured and are therefore unknown. However,

they are subject to the missing energy constraint:

ninv
∑

i=1

~piT = 6~PT = −~PT , (2.2)

which causes the second term in (2.1) to vanish and we arrive at a simpler version of (2.1)

ŝ =

(

E +

ninv
∑

i=1

√

m2
i + ~p 2

iT + p2
iz

)2

−
(

Pz +

ninv
∑

i=1

piz

)2

. (2.3)

We see that the expression for ŝ is a function of a total of 3ninv variables ~pi which are subject

to the 2 constraints (2.2). Given that we are missing so much information about the missing

momenta ~pi, it is clear that there is no hope of determining ŝ exactly from experiment, and the

best one can do is to use some kind of an approximation for it. For example, Ref. [52] recently

proposed to approximate the real values of the missing momenta ~pi with the values that

determine the event MT2 variable. However, constructing any MT2 variable requires one to

make certain model-dependent assumptions about the underlying topology of the event, and

furthermore, for very complex events, with large nvis, the associated combinatorial problem

will become quite severe. Therefore, here we shall use a different, more model-independent

approach. The key is to realize that the function ŝ has an absolute global minimum ŝmin, when

considered as a function of the unknown variables ~pi. Therefore, we choose to approximate

the real values of the missing momenta with the values corresponding to the global minimum

ŝmin. The minimization of the function (2.3) with respect to the variables ~pi, subject to the

constraint (2.2), is rather straightforward. The global minimum is obtained for

~piT =
mi

Minv
6~PT , (2.4)

piz =
miPz

√

E2 − P 2
z

√

1 +
6P 2

T

M2
inv

, (2.5)

where the parameter

Minv ≡
ninv
∑

i=1

mi =

nχ
∑

i=1

mi (2.6)
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was already defined in (1.5) and represents the total mass of all invisible particles in the event.

Since the neutrinos are massless, Minv only counts the masses of the BSM invisible particles

which are present in the event. Substituting (2.4) and (2.5) into (2.3) and simplifying, we

get the minimum value ŝmin of the function (2.3) to be

ŝmin(Minv) =

(

√

E2 − P 2
z +

√

6P 2
T + M2

inv

)2

. (2.7)

Since the right-hand side is a complete square, it is convenient to take the square root of

both sides and consider instead

ŝ
1/2
min(Minv) =

√

E2 − P 2
z +

√

6P 2
T + M2

inv , (2.8)

which can be equivalently rewritten in terms of the missing energy 6ET as

ŝ
1/2
min(Minv) =

√

E2 − P 2
z +

√

6E2
T + M2

inv , (2.9)

completing the proof of (1.4).

A few comments regarding the variable ŝ
1/2
min defined in (2.9) are in order. Perhaps the

most striking feature of ŝ
1/2
min is its simplicity: the result (2.9) holds for completely general

types of events, with any number and/or types of missing particles. Clearly, ŝ
1/2
min itself is both

a global and an inclusive variable, since it is defined in terms of the global and inclusive event

quantities E, Pz and 6ET , which do not require any explicit event reconstruction. It is easy to

see that the expression (2.9) is invariant under longitudinal boosts, since it depends on the

quantities E2 − P 2
z , 6ET and Minv, all three of which are invariant under such boosts. Also

notice that ŝ
1/2
min has units of energy and thus provides some measure of the energy scale in

the event, and can be directly compared to other popular energy-scale variables (see Section 3

below). In the remainder of this paper we shall investigate in more detail the properties of

the new variable (2.9).

3. Comparison between ŝ
1/2
min and other global inclusive variables

The immediate question after the discovery of a MET signal of new physics at the Tevatron

or LHC, will be: “What is the energy scale of the new physics?”. We shall now argue that

our global inclusive variable ŝ
1/2
min from (2.9) provides a first, relatively quick answer to this

question, which will turn out to be surprisingly accurate, given that we are not attempting

any event reconstruction or modelling of the new physics. Of course, one might do better

by considering exclusive signatures and applying the usual tricks for mass measurements,

but chances are that this will require some time. It is therefore worth investigating how

much information one can get from totally inclusive measurements like (2.9) which should be

available from very early on.

To set up the subsequent discussion, let us introduce the different global variables from

Fig. 1 which will be experimentally accessible. The total visible energy E is simply

E =
∑

α

Eα , (3.1)
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where we use the index α to label the calorimeter towers, and Eα is the energy deposit in

the α tower3. As usual, since muons do not deposit significantly in the calorimeters, the

measured Eα should first be corrected for the energy of any muons which might be present

in the event and happen to pass through the corresponding tower α. The three components

of the total visible momentum ~P are

Px =
∑

α

Eα sin θα cos ϕα , (3.2)

Py =
∑

α

Eα sin θα sin ϕα , (3.3)

Pz =
∑

α

Eα cos θα , (3.4)

where θα and ϕα are correspondingly the azimuthal and polar angular coordinates of the α

calorimeter tower. The total transverse energy ET is

ET ≡
∑

α

Eα sin θα , (3.5)

while the missing transverse energy 6ET was already defined in (1.3).

We are now in a position to introduce the variable HT which is commonly used throughout

the literature, yet, quite surprisingly, there is no universally accepted definition for it. The

idea behind HT is to add up the transverse energies of various objects in the event, including

the missing energy (1.3). While the idea is rather straightforward, there are large variations

when it comes to its implementation. For example, one issue is whether one should use only

reconstructed objects or simply sum over all calorimeter towers as we have been doing here

so far. The former method has the advantage that it would tend to reduce pollution from

the underlying event, noise, etc. On the other hand, it would introduce dependence on the

jet reconstruction algorithm, the ID cuts, etc. Those subtleties are avoided in the second

method, which defines a purely calorimeter based HT . There are other possible variations in

the definition of HT , for example, whether one includes all jets, or just the top 4 in pT [12],

whether or not one includes the leptons in the sum, etc. For the purposes of this paper, we

do not need to go into such details, and we shall simply use a calorimeter-based, all inclusive

HT definition as

HT ≡ ET + 6ET . (3.6)

Finally, we shall also consider the total visible mass in the event [2]

M ≡
√

E2 − P 2
x − P 2

y − P 2
z =

√

E2− 6P 2
T − P 2

z . (3.7)

Note that in terms of the visible mass M just introduced, our ŝ
1/2
min variable (2.9) can be

alternatively written in a more symmetric form as

ŝ
1/2
min(Minv) =

√

6E2
T + M2 +

√

6E2
T + M2

inv . (3.8)

3We ignore the difference in the segmentation of the hadronic and electromagnetic calorimeters, and for

Eα simply add up the HCAL and ECAL energy deposits.
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Figure 2: Unit-normalized distributions of the various energy scale variables Ei introduced in Sec-

tion 3: E (blue), 6ET (cyan), ET (magenta), HT (green), M (red) and ŝ
1/2

min(0) (black); in (a) single-

lepton and (b) dilepton tt̄ events. The dotted (yellow-shaded) histograms are identical in panels (a)

and (b) and show the true ŝ1/2 distribution.

We are now ready to contrast the so defined global inclusive variables E, 6ET , ET , HT and

M to our variable ŝ
1/2
min defined in (2.9). Since ŝ

1/2
min(Minv) depends on the a priori unknown

invisible mass parameter Minv, first we need to decide what to do about the Minv dependence

in (2.9). In the remainder of this section, we shall adopt a most conservative approach: we

will simply set Minv = 0 and consider the variable

ŝ
1/2
min(0) =

√

E2 − P 2
z + 6ET . (3.9)

This choice is indeed very conservative: for SM processes, where the missing energy is due

to neutrinos, this would be the proper variable to use anyway. On the other hand, for

BSM processes with massive invisible particles, at this point we are lacking the necessary

information to make a more informed choice. We shall postpone our quantitative discussion

of the Minv dependence in (2.9) until the next section 4.

We shall illustrate our comparisons with specific examples, illustrated in Figs. 2, 3 and

4. In each case, we shall plot the six different global inclusive variables Ei introduced so far,

with the following color scheme: in Figs. 2-4 we shall plot the calorimeter energy E (3.1)

with blue lines, the missing transverse energy 6ET (1.3) with cyan lines, the total transverse

energy ET (3.5) with magenta lines, the HT variable (3.6) with green lines, the total visible

mass M (3.7) with red lines, and finally, our ŝ
1/2
min(0) variable (3.9) with solid black lines. All

numerical results shown here have been obtained with PYTHIA4 [57] and the PGS detector

simulation package [58]. As our first example, shown in Fig. 2, we choose tt̄ production at the

LHC (the corresponding data from the Tevatron already exists, so the same comparison can

also be made directly with CDF and D0 data as well). In Fig. 2(a) (Fig. 2(b)) we show our

4For simplicity, for the numerical results shown in this and the next two sections, we turned off ISR and

MPI in PYTHIA, which allows us to better illustrate and subsequently explain the salient features of ŝ
1/2

min.

The ISR and MPI effects will be studied later in Section 6.
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results for the semi-leptonic (dilepton) channel. The dilepton tt̄ sample is rather similar to

a hypothetical new physics signal due to dark matter particle production: each event has a

certain amount of missing energy, which is due to two invisible particles escaping the detector.

In each panel of Fig. 2, the dotted (yellow-shaded) histogram shows the true ŝ1/2 dis-

tribution, which is the one we would ideally want to measure. However, due to the missing

neutrinos, ŝ1/2 is not directly observable, unless we make some further assumptions and at-

tempt some kinematical event reconstruction. Therefore we concentrate on the remaining

distributions shown in Fig. 2, which are immediately and directly observable. In particular,

we shall pose the question, which among the various distributions exhibited in Fig. 2 seems to

be the best approximation to the true ŝ1/2 distribution. A quick glance at Fig. 2 reveals that

the variable which comes closest to the true ŝ1/2 is precisely our variable ŝ
1/2
min(0) defined in

(3.9). As for the rest, we see that the missing transverse energy 6ET is a very poor estimator

of the energy scale of the events, while ET , HT and M are doing a little bit better, yet are

still quite far off. As can be expected from its definition (3.6), HT is always somewhat larger

than ET , while HT and M are rather similar, with HT (M) doing better for the dilepton

(semi-leptonic) case. Finally, the total energy E is relatively close to the true ŝ1/2 distribu-

tion, but is quite broad in both Figs. 2(a) and 2(b). In contrast, the ŝ
1/2
min(0) distribution is

quite sharp, and is thus a better indicator of the relevant energy scale.

Let us now take a closer look at the two ŝ1/2 distributions in each panel of Fig. 2.

Since ŝ
1/2
min was defined through a minimization procedure, it is clear that it will always

underestimate the true ŝ1/2. Fig. 2 quantifies the amount of this underestimation for the

case of tt̄ events. We see that ŝ
1/2
min(0) is tracking the true ŝ1/2 quite well for the case of

semi-leptonic tt̄ events in Fig. 2(a). This could have been expected on very general grounds:

for semi-leptonic events, we are missing a single neutrino, whose transverse momentum is

actually measured through 6 ~PT , so that the only mistake we are making in approximating

ŝ1/2 ≈ ŝ
1/2
min(0) is due to the unknown longitudinal component p1z. In the case of dilepton

events, however, there are two missing neutrinos, and thus more unknown degrees of freedom

which we have to fix rather ad hoc according to our prescription (2.4, 2.5). The resulting

error is larger and leads to a larger displacement between the true ŝ1/2 distribution and its

ŝ
1/2
min(0) approximation, as can be seen in Fig. 2(b).

In the case of tt̄ illustrated in Fig. 2 the missing energy arises from massless SM neutrinos,

so that the approximation Minv = 0 is well justified. Let us now consider a situation where

the observed missing energy signal is due to massive neutral stable particles, as opposed

to SM neutrinos. The prototypical example of this sort is low energy supersymmetry with

conserved R-parity, and this is what we shall use for our next two examples as well. Each

SUSY event will be initiated by the pair-production of two superpartners, which will then

cascade decay to the lightest supersymmetric particle (LSP), which we shall assume to be

the lightest neutralino χ̃0
1. Since there are two SUSY cascades per event, there will be two

LSP particles in the final state, so that

ninv = nχ = 2 . (3.10)
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Figure 3: The same as Fig. 2, but for gluino pair production events with (a) 2-jet gluino decays as in

(3.14) and (b) 4-jet gluino decays as in (3.15). The SUSY masses are fixed as follows: mχ̃0

1

= 100 GeV,

mχ̃0

2

= 200 GeV and mg̃ = 600 GeV. In addition to the variables shown in Fig. 2, here we also plot the

ŝ
1/2

min(2mχ) distribution (dotted line) with the correct value of the invisible mass Minv = 2mχ = 2mχ̃0

1

.

Furthermore, since the two LSPs are identical, we also have

m1 = m2 ≡ mχ , (3.11)

i.e. in what follows we shall denote the true LSP mass with mχ. From (1.5), (3.10) and

(3.11) it follows that the true total invisible mass in any SUSY event is simply

Minv = 2mχ . (3.12)

However, the true LSP mass mχ is a priori unknown, therefore, when we construct our

variable

ŝ
1/2
min(Minv) = ŝ

1/2
min(2mχ) (3.13)

for the SUSY examples, we will have to make a guess for the value of the LSP mass mχ. We

shall denote this trial value by m̃χ, in order to distinguish it from the true LSP mass mχ.

This situation is reminiscent of the case of the Cambridge MT2 variable [9], where in order to

construct the MT2 variable itself, one must first choose a test value for the LSP mass. Our

notation here is consistent with the notation for MT2 used in [54].

We are now ready to describe our SUSY examples. For our study we will choose a

rather difficult signature — jets plus 6ET , for which all other proposed methods for mass

determination are bound to face significant challenges. For concreteness, we consider gluino

production, followed by a gluino decay to jets and a neutralino. In Fig. 3 we consider gluino

pair-production (g̃g̃), while in Fig. 4 we show results for associated gluino-LSP production

(g̃χ̃0
1). In addition, we consider two different possibilities for the gluino decays. The first

case, shown in Figs. 3(a) and Figs. 4(a), has the gluino decaying directly to the LSP:

g̃ → jjχ̃0
1 , (3.14)
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Figure 4: The same as Fig. 3, but for events of associated gluino-LSP production.

so that the gluino pair-production events in Fig. 3(a) have 4 jets and missing energy, while

the associated gluino-LSP production events in Fig. 4(a) have two jets and missing energy.

In the second case, presented in Figs. 3(b) and Figs. 4(b), we forced the gluino to always

decay to χ̃0
2, which in turn decays via a 3-body decay to 2 jets and the LSP:

g̃ → jjχ̃0
2 → jjjjχ̃0

1 . (3.15)

As a result, the gluino pair-production events in Fig. 3(b) will exhibit 8 jets and missing

energy, while the associated gluino-LSP production events in Fig. 4(b) will have four jets and

missing energy. Of course, the actual number of reconstructed jets in such events may be even

higher, due to the effects of initial state radiation (ISR) and/or jet fragmentation. In any

case, such multijet events will be very challenging for any exclusive reconstruction method,

therefore it is interesting to see what we can learn about them from the global inclusive

variables discussed here.

For concreteness, in what follows we shall always fix the relevant SUSY masses according

to the approximate gaugino unification relation

mg̃ = 3mχ̃0
2

= 6mχ̃0
1
≡ 6mχ , (3.16)

and since we assume three-body decays in (3.14) and (3.15), we do not need to specify the

SUSY scalar mass parameters, which can be taken to be very large. In addition, as implied

by (3.16), we imagine that the lightest two neutralinos are gaugino-like, so that we do not

have to specify the higgsino mass parameter either, and it can be taken to be very large as

well.

Fig. 3 shows our results for the different global inclusive variables introduced earlier, for

the case of gluino pair-production. All in all, the outcome is not too different from what

we found previously in Fig. 2 for the tt̄ case: when it comes to approximating the true ŝ1/2

distribution, the missing energy 6ET does the worst, our variable ŝ
1/2
min(0) does the best, and

all other remaining variables are somewhere in between those two extremes. This time, in
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Fig. 3 we also plot one “cheater” distribution, namely ŝ
1/2
min(2mχ), where we have used the

correct value of the invisible mass Minv = 2mχ = 2mχ̃0
1
. It demonstrates that knowing the

actual value of the LSP mass helps (since ŝ
1/2
min(2mχ) gets closer to the truth), but is not

crucial: the quantity ŝ
1/2
min(0) still does surprisingly well in approximating the true ŝ1/2.

Notice that when the missing energy in the data is due to massive BSM particles, there are

two sources of error in approximating ŝ1/2 ≈ ŝ
1/2
min(0), each leading to an underestimation. By

comparing the three different types of ŝ1/2 distributions shown in each panel of Fig. 3, one can

see quantitatively the effect of each source. First, when we take the minimum possible value

of ŝ1/2 in (2.3), we are underestimating by a certain amount, which can be seen by comparing

the “cheater” distribution ŝ
1/2
min(2mχ) (dotted line) to the ŝ1/2 truth (yellow shaded). Second,

as we do not know a priori the LSP mass, we take conservatively Minv = 0, which leads to

a further underestimation, as evidenced by the difference between the ŝ
1/2
min(0) distribution

(solid line) and its “cheater” version ŝ
1/2
min(2mχ). In spite of those two undesirable effects, the

ŝ
1/2
min(0) approximation that we end up with is still surprisingly close to the real one, and is

certainly the best approximation among the variables we are considering.

The common thread in our first two examples shown in Figs. 2 and 3 was that the events

were symmetric, i.e. we produce the same type of particles, which then decay identically

on each side of the event. As our last example, we shall consider an extreme version of an

asymmetric event, namely one where all visible particles come from the same side of the event,

i.e. from a single decay chain. The process of associated gluino-LSP production is exactly of

this type - all jets arise from the decay chain of a single gluino, which is recoiling against an

LSP. The topology of these events is very different from the events considered earlier in Figs. 2

and 3. Nevertheless, as seen in Fig. 4, we find very similar results. In particular, among all

the different global inclusive variables that we are considering, the quantity ŝ
1/2
min(0) is still

the one closest to the true ŝ1/2 distribution.

4. Dependence of ŝ
1/2
min on the unknown masses of invisible particles

In the previous Section 3 we demonstrated the advantage of ŝ
1/2
min in comparison to the other

commonly used global inclusive event variables. From now on we shall therefore focus our

discussion entirely on ŝ
1/2
min and its properties. In this Section we shall investigate in more

detail the dependence of ŝ
1/2
min on the (a priori unknown) masses of the invisible particles which

are causing the observed missing energy signal. Then in the next Section 5 we shall use these

results to correlate the observed ŝ
1/2
min distribution to the masses of the parent particles which

were originally produced in the event.

Recall that in the three examples from the previous section, we always conservatively

chose the invisible mass to be zero: Minv = 0 and we correspondingly considered ŝ
1/2
min(0).

This choice is actually a good starting point in studying any missing energy signature by

means of ŝ
1/2
min(Minv). The assumption of Minv = 0 is precisely what one would do if one

were to assume that the missing energy is simply due to SM neutrinos, as opposed to some

new physics. However, if the observed missing energy signal is in excess of the expected SM
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Figure 5: Unit-normalized distributions of the ŝ
1/2

min(Minv) variable for several different SUSY mass

spectra: (a) mχ̃0

1

= 100 GeV, (b) mχ̃0

1

= 200 GeV, (c) mχ̃0

1

= 300 GeV, and (d) mχ̃0

1

= 400 GeV.

The remaining masses are fixed according to (3.16). We consider gluino pair-production events with

2-jet gluino decays as in (3.14). In each panel, we plot the ŝ
1/2

min(Minv) = ŝ
1/2

min(2m̃χ) distributions

for several representative values of the trial LSP mass m̃χ as shown. The color scheme is such that

the black histogram is always the case where we happen to use the correct value of the LSP mass:

m̃χ = mχ. The dotted (yellow-shaded) histogram gives the true ŝ1/2 distribution.

backgrounds, then an alternative, BSM explanation for those events must be sought. In that

case, we would not know the mass of the invisible particles, and we would have to make a

guess. Our main goal in this section is to study numerically the effect of this guess. Our

philosophy will be to revisit the SUSY examples from Section 3 and simply vary the test mass

m̃χ of the invisible particles (the LSPs). Since the two LSPs are identical (see eq. (3.11)), we

will take their test masses to be the same as well.

Our results are presented in Figs. 5, 6 and 7. In Figs. 5 and 6 we consider gluino pair

production. In Fig. 5 each gluino decays to 2 jets as in (3.14), while in Fig. 6 each gluino

decays to 4 jets as in (3.15). Then in Fig. 7 we consider asymmetric events of associated

gluino-LSP production, where the single gluino decays to 4 jets as in (3.15). In each figure,
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Figure 6: The same as Fig. 5, but for 4-jet gluino decays as in (3.15).

we consider four different study points, defined through the value of the true LSP mass mχ.

In all three Figs. 5-7, panels (a) correspond to mχ = 100 GeV, panels (b) have mχ = 200 GeV,

panels (c) have mχ = 300 GeV, while in panels (d) mχ = 400 GeV. As before, the remaining

masses mg̃ and mχ̃0
2
are always fixed according to the approximate gaugino unification relation

(3.16). Each panel in Figs. 5-7 exhibits the true ŝ1/2 distribution (yellow-shaded histogram),

and the corresponding ŝ
1/2
min(2m̃χ) distributions for several representative values of the test

LSP mass m̃χ. Each ŝ
1/2
min curve is both color coded and labelled by its corresponding value

of m̃χ. Our color scheme is such that the ŝ
1/2
min histogram in black is the one where we happen

to use the correct value of the LSP mass, i.e. when m̃χ = mχ.

The qualitative behavior seen in Figs. 5-7 is more or less as expected: the ŝ
1/2
min(2m̃χ)

distributions shift to higher energy scales, as we increase the value of the test mass m̃χ. This

can be easily understood from the definition (2.9) of the ŝ
1/2
min(Minv) variable: for any given

set of E, Pz and 6ET values, ŝ
1/2
min(Minv) is a monotonically increasing function of Minv. The

shifts observed in Figs. 5-7 also make perfect physical sense: obviously, one needs more energy

in order to produce heavier invisible particles.
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Figure 7: The same as Fig. 6, but for events of associated gluino-LSP production (g̃χ̃0

1).

Let us now concentrate on the quantitative aspects of Figs. 5-7. Upon careful inspection

of the three figures, we notice that when the test mass m̃χ is equal to the true mass mχ

(i.e. for the black colored histograms), the corresponding distribution ŝ
1/2
min(2mχ) peaks very

close to the true ŝ1/2 threshold
(

ŝ1/2
)

thr
. As usual, we define the threshold

(

ŝ1/2
)

thr
as the

value where the true ŝ1/2 distribution (yellow shaded histogram) sharply turns on. This

observation is potentially extremely important, since the threshold
(

ŝ1/2
)

thr
is simply related

to the masses of the two particles which were originally produced in the event. For example,

for the gluino pair production events in Figs. 5 and 6 the threshold is given by

(

ŝ1/2
)

thr
= 2mg̃ = 12mχ , (4.1)

where the second equality is valid only under the gaugino unification assumption (3.16).

Similarly, in the case of associated gluino-LSP production in Fig. 7, the threshold is given by

(

ŝ1/2
)

thr
= mg̃ + mχ̃0

1
= 7mχ , (4.2)
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where once again the second equality is due to our assumption (3.16). It is easy to verify that

in all three figures 5, 6 and 7, the ŝ1/2 thresholds (i.e. the sharp turn-ons in the yellow-shaded

distributions) always occur at the locations predicted in eqs. (4.1) and (4.2).

Let us now introduce one last piece of notation. In what follows we shall use the notation
(

ŝ
1/2
min(Minv)

)

peak
(4.3)

to denote the particular value of ŝ
1/2
min where we find the peak of the distributions

dN(ŝ
1/2
min(Minv))

dŝ
1/2
min

(4.4)

which are plotted in Figs. 5-7. In other words,

[

d

dŝ
1/2
min

dN(ŝ
1/2
min(Minv))

dŝ
1/2
min

]

ŝ
1/2

min=
“

ŝ
1/2

min(Minv)
”

peak

= 0. (4.5)

With those conventions, we can now formulate our empirical observation above as
(

ŝ1/2
)

thr
≈
(

ŝ
1/2
min(2mχ)

)

peak
. (4.6)

The last equation is one of the main results in this paper. While we were not able to derive it

in a strict mathematical sense, it is nevertheless supported by our numerical results shown in

Figs. 5-7. We also checked many other SUSY examples, where we used different mass spectra

and different production processes and decays. We found that in all cases the approximate

relation (4.6) still holds. Fig. 8 quantifies this statement for the two previously considered

processes of gluino pair production and associated gluino-LSP production, where the gluinos

are forced to decay either to 2 jets as in (3.14) or to 4 jets as in (3.15). In the figure we

compare the following three quantities, all of which are related in one way or another to the

energy scale ŝ1/2 of the events:

•
(

ŝ1/2
)

ave
: this is the average of the true ŝ1/2 distribution (the one shown in the previous

figures with the yellow-shaded histogram). Here we had to pick some variable which

would characterize the true ŝ1/2 distribution. Two alternative choices which we also

considered were the peak or the mean of the true ŝ1/2 distribution. All three of these

variables are numerically quite close, with the peak value typically being the lowest, and

the average value being the largest. In the end we chose
(

ŝ1/2
)

ave
for its computational

simplicity. This choice is rather inconsequential for our conclusions below, since we

are introducing the
(

ŝ1/2
)

ave
variable only for illustration purposes in Fig. 8. As we

shall see,
(

ŝ1/2
)

ave
actually cancels out in the final comparison between the next two

variables.

•
(

ŝ1/2
)

thr
: this is the threshold of the true ŝ1/2 distribution, i.e. the minimum allowed

value of ŝ1/2. Since the minimum ŝ1/2 is obtained when the parent particles are produced
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Figure 8: Validity of the approximation (4.6) as a function of the LSP mass mχ. The SUSY mass

spectrum is fixed as in (3.16). In panels (a) and (b) we consider gluino pair production events, while

in panels (c) and (d) we study associated gluino-LSP production. In panels (a) and (c) we force the

gluino to decay to 2 jets as in (3.14), while in panels (b) and (d) each gluino decays to 4 jets as in (3.15).

In each panel we compare the following three quantities:
(

ŝ1/2
)

ave
, which is the average of the true

ŝ1/2 distribution;
(

ŝ1/2
)

thr
, which is the threshold of the true ŝ1/2 distribution; and

(

ŝ
1/2

min(2mχ)
)

peak
,

which is the location of the peak of the ŝ
1/2

min(2mχ) distribution.

at rest,
(

ŝ1/2
)

thr
is nothing but the sum of the parent particle masses, as indicated in

eqs. (4.1) and (4.2). Therefore,
(

ŝ1/2
)

thr
is precisely the parameter that we would like

to measure, in order to determine the true mass scale of the parent particles.

•
(

ŝ
1/2
min(2mχ)

)

peak
: this is the parameter defined in eq. (4.5), namely the location of

the peak of the ŝ
1/2
min(2mχ) distribution, where we use the correct value for the invisible

mass, in this case Minv = 2mχ, since each SUSY event has two escaping LSPs.

According to our empirically derived conjecture (4.6), the last two variables are approxi-

mately equal, and the purpose of Fig. 8 is to test this hypothesis, using the previously consid-
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ered SUSY examples: gluino pair production (panels (a) and (b)), and associated gluino-LSP

production (panels (c) and (d)). In panels (a) and (c) we force the gluino to decay to 2 jets

as in (3.14), while in panels (b) and (d) each gluino decays to 4 jets as in (3.15). Each line

in Fig. 8 gives the fractional difference between a pair of ŝ1/2 quantities as defined above.

For normalisation we used the value of
(

ŝ1/2
)

thr
, which is given by (4.1) for panels (a) and

(b) and by (4.2) for panels (c) and (d). We vary the relevant part of the SUSY spectrum by

changing the input value of the LSP mass mχ and adjusting the other masses in accord with

(3.16).

The main result in Fig. 8 is the comparison between the experimentally observable quan-

tity
(

ŝ
1/2
min(2mχ)

)

peak
and the theoretical parameter

(

ŝ1/2
)

thr
. As indicated by the red lines

in Fig. 8, for the examples shown, those two quantities differ by no more than 10%, thus

validating our conjecture (4.6) at the 10% level as well. We find this result quite intriguing.

After all, we have not attempted any event reconstruction or decay chain identification, we

are looking at very complex and challenging multijet signatures, and we have even included

detector resolution effects. After all those detrimental factors, the possibility of making any

kind of statement regarding the mass scale of the new physics at the level of 10% should be

considered as rather impressive.

We find it instructive to understand how we ended up with the observed precision, by

comparing these two quantities
(

ŝ
1/2
min(2mχ)

)

peak
and

(

ŝ1/2
)

thr
to the true ŝ1/2 as represented

by its average
(

ŝ1/2
)

ave
. The blue lines in Fig. 8 show the fractional difference between

(

ŝ1/2
)

ave
and

(

ŝ1/2
)

thr
. We see that this difference varies by quite a lot, on the order of

10-30% for gluino pair-production, but may get in excess of 150% for associated gluino-LSP

production. As expected,
(

ŝ1/2
)

ave
is always larger than the threshold value

(

ŝ1/2
)

thr
, since

the parent particles are typically produced with some boost, and the blue lines in Fig. 8

simply quantify the effect of this boost.

On the other hand, the green lines in Fig. 8 represent the fractional difference (again

normalised to
(

ŝ1/2
)

thr
) between the measurable quantity

(

ŝ
1/2
min(2mχ)

)

peak
introduced earlier

in eq. (4.5), and the true energy scale of the events as given by
(

ŝ1/2
)

ave
. We see that this

time the fractional difference is negative, which simply reflects the fact that our variable

ŝ
1/2
min, being defined through a minimization condition, will always underestimate the true

energy scale. The interesting fact is that while the blue and green curves in Fig. 8 have

opposite signs, in absolute value they are very similar, leading to a fortuitous cancellation.

The resulting discrepancy indicated by the red lines is therefore much smaller than either of

the two individual errors indicated by the blue and green lines.

It is now easy to understand qualitatively the origin of the approximate relation (4.6).

Due to the boost at production, the true energy scale ŝ1/2 is larger than the threshold

energy
(

ŝ1/2
)

thr
by a certain amount. Later on, when we approximate ŝ1/2 with ŝ

1/2
min, we

underestimate the true energy scale ŝ1/2 by more or less the same amount, bringing us

back near the threshold
(

ŝ1/2
)

thr
. As a result, the ŝ

1/2
min distribution peaks very near the mass

threshold
(

ŝ1/2
)

thr
which we are trying to measure in the first place. Of course, the proximity
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of the ŝ
1/2
min peak to the threshold

(

ŝ1/2
)

thr
will be process dependent, but according to the

examples considered here, holds to a remarkable accuracy.

5. Correlation of the ŝ
1/2
min peak with the heavy particle mass threshold

In the absence of a rigorous mathematical derivation, eq. (4.6) should be considered simply

as a conjecture. Nevertheless, once eq. (4.6) is assumed to be approximately true, it allows

us to measure the mass scale of the parent particles in terms of the hypothesized test mass

m̃χ of the lightest invisible particle, e.g. the LSP in SUSY. For example, in the case of gluino

pair-production in SUSY, we can use eqs. (4.1) and (4.6) to obtain a measurement of the

gluino mass

m̃g̃(m̃χ) ≈ 1

2

(

ŝ
1/2
min(2m̃χ)

)

peak
(5.1)

as a function of the trial LSP mass m̃χ. Similarly, we can measure the gluino mass even in

the much more challenging case of associated gluino-LSP production: from eqs. (4.2) and

(4.6), we obtain

m̃g̃(m̃χ) ≈
(

ŝ
1/2
min(2m̃χ)

)

peak
− m̃χ . (5.2)

As evidenced from eqs. (5.1) and (5.2), these measurements are very straightforward, since

the only experimental input needed for them is the location of the peak of our all-inclusive

global variable ŝ
1/2
min. One should not be bothered by the fact that we did not get an absolute

measurement of the gluino mass, but only obtain it as a function of the LSP mass. This is a

well-known drawback of the other common mass measurement methods as well. For example,

the classic MT2 endpoint analysis only yields the heavier parent mass as a function of the

lighter child mass [9]. Similarly, the measurement of a single endpoint in some observable

invariant mass distribution provides only a single functional relation between the masses of

the intermediate particles in the decay chain, and by itself does not measure the absolute

scale. In this sense, our measurement (5.1) is on equal footing with the more traditional

methods.

However, it is worth emphasizing the advantage of our method in the case of asymmetric

events, where the parent particles are very different. An extreme version of such events is

provided by the associated gluino-LSP production considered earlier. Under those circum-

stances, the standard MT2 method does not apply, while the single decay chain in the event

may prove to be too short or too messy to provide a clean measurement through the invariant

mass endpoint method. In contrast, we can still utilize ŝ
1/2
min for the measurement indicated

in (5.2) and a corresponding gluino mass determination.

Let us now see how well the proposed measurements (5.1) and (5.2) will do for each of

the SUSY examples considered in the previous section. In Fig. 9(a) we used eq. (5.1) to

convert our previous measurements of the various ŝ
1/2
min(2m̃χ) peaks in Figs. 5 and 6 into a

corresponding gluino mass measurement. The red (blue) dashed lines correspond to the case

of 4-jet (2-jet) gluino decays as in (3.15) ((3.14)). We show results for the same four study

points used in the four panels of Figs. 5 and 6, and the open circles mark the locations of the

true masses (mχ,mg̃), for each study point.
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Figure 9: The correlation between the test LSP mass m̃χ and the corresponding gluino mass m̃g̃,

derived from (a) our proposed measurement (5.1) in gluino pair-production events, or (b) our proposed

measurement (5.2) in associated gluino-LSP production events. Red (blue) lines correspond to the

case of gluino decays to 4 jets as in (3.15) (gluino decays to 2 jets as in (3.14)). The black dotted lines

in panel (a) indicate the theoretically derived correlation from an ideal MT2 endpoint analysis, i.e.

assuming perfect resolution of the jet combinatorial ambiguity and ignoring any detector smearing.

The open circles mark the locations of the true masses (mχ, mg̃), for each of our four study points.

The quality of the measurement (5.1) can be judged from the proximity of the experi-

mentally derived m̃g̃(m̃χ) curves shown in the figure to the exact location of the true masses

(mχ,mg̃). We see that both the red and blue curves in Fig. 9(a) pass very close to the true

answer, especially for the study points with lower mχ. In fact, we obtain a better measure-

ment from the more complex 8-jet events (the red curves). At first sight, this may seem

counterintuitive, until one realizes that the more visible objects are present in the event, the

smaller the effect of the missing particles, and hence the smaller the error due to our approx-

imation (2.4, 2.5). Such multijet events appear very challenging to be tackled by any other

means. For the sake of comparison, the black dotted lines in Fig. 9(a) show the theoretically

derived correlation from an ideal MT2 endpoint analysis, i.e. assuming perfect resolution of

the jet combinatorial ambiguity and ignoring any detector resolution effects. Comparing the

red line from our measurement (5.1) to the ideal MT2 line, we are tempted to conclude that,

in essence, our ŝ
1/2
min variable contains pretty much the same amount of information as MT2.

The big advantage of ŝ
1/2
min, however, is the fact that we can obtain this information at a much

lower cost in terms of analysis effort.

Finally, in Fig. 9(b) we show our results from the analogous measurement (5.2) in the

case of associated gluino-LSP production. Here we also consider two different options for the

gluino decay — 2 jet decays as in (3.14) (blue lines), or 4 jet decays as in (3.15) (red lines).

We then plot the resulting functional dependence m̃g̃(m̃χ) for each of the four study points

considered earlier. Comparing Fig. 9(b) to Fig. 9(a) which we just discussed, we arrive at

very similar conclusions: the measurement (5.2) is still quite accurate, and the superior result

is provided by the more complex topology. Notice that here we do not show any MT2-based
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results, since the concept of MT2 can not be applied to an extremely asymmetric topology

like this one.

6. The impact of initial state radiation and multiple parton interactions

Up to now we have been discussing the
√

ŝ variable of the primary parton-level hard scat-

tering (HS). In principle,
√

ŝ can be measured exactly, whenever we could both detect and

identify the decay products of the heavy particles which were initially produced in the HS.

Unfortunately, in reality it is rather difficult to measure
√

ŝ directly, for a couple of reasons:

1. Omitting relevant particles from the
√

ŝ calculation. This case arises whenever some

of the decay products resulting from the HS are not detected. For example, this may

happen due to the imperfect hermeticity of the detector, where some of the relevant

decay products are lost down the beam pipe. Fortunately, in reality this effect is pretty

small. A much more serious problem arises whenever there are invisible particles χi

(see Fig. 1) among the relevant decay products. Then, a relatively large fraction of the

initial
√

ŝ may go undetected, as can be seen by comparing the
√

ŝmin distributions in

Figs. 3-7 to the respective true (yellow-shaded)
√

ŝ distributions.

2. Including irrelevant particles in the
√

ŝ calculation. In general, any given event will

contain a certain number of particles which will be seen in the detector, but did not

originate from the primary HS. Initial state radiation (ISR), multiple parton interactions

(MPI) and pile-up are the main examples of processes contributing to this effect. The

pile-up effect can be controlled by a suitable ∆z cut, removing from consideration tracks

which do not appear to originate from the primary vertex. However, ISR and MPI can

be a serious problem. Including the extra particles will necessarily lead to an increase

in the measured value of
√

ŝ. In order to emphasize this difference, in the rest of this

section we shall be using a prime to designate the experimentally measured quantities

which include the full ISR and MPI effects (
√

ŝ′ and
√

ŝ′min, correspondingly).

Our proposal for dealing with the first of these two problems was to introduce the
√

ŝmin

variable in lieu of the true
√

ŝ. We then found an interesting empirical correlation (4.6)

between
√

ŝmin(2mχ) and the new physics mass scale. Now we shall turn our attention to

dealing with the second problem, namely the fact that
√

ŝ′min >
√

ŝmin.

Before we begin, we should mention that, depending on the particular circumstances

and/or the goal of the experimenter, there may be certain situations where the inequality√
ŝ′min >

√
ŝmin may not represent an actual problem. For example, if one is simply trying

to measure the total energy in the observed events and not just the energy of the HS, then for

missing energy events the relevant quantity of interest would be
√

ŝ′min itself, which would

still be given by the expression (1.4) derived in Section 2. There may also be situations

where the ISR and/or MPI products may be reliably identified and excluded from the
√

ŝmin

calculation. For example, consider a lepton collider and a missing energy signature with any

number of jets and/or leptons. Since MPI is absent, while ISR and beamstrahlung would
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only contribute photons, there will be no confusion with regards to which particles are due

to ISR and which are coming from the HS. The analogous example at hadron colliders would

be a signature containing anything but QCD jets. In what follows we shall ignore such trivial

cases and instead focus on the much more challenging case of hadron colliders and jetty

signatures, where the ISR/MPI products cannot be easily recognized.

In the absence of any reliable methods for resolving the jet combinatorial problem on an

event by event basis, one is left with two options. First, one may try to compensate for the

ISR/MPI effects on the global
√

ŝ′min distribution. In order to do this, one needs to know

how ISR/MPI would affect the original
√

ŝmin distribution. Ideally, this information should

be measured from real data, using some Standard Model process as a standard candle. For

example, Drell-Yan can provide the relevant information for a qq̄ initial state [59], while tt̄

can be used to study the gg initial state. Alternatively, one may calculate the ISR effects

from first principles in QCD. Both of these approaches will be pursued in a future work [60].

A second approach would be to design and apply cuts which would minimize the ISR

and MPI effects on the calculation of
√

ŝ′min. Unfortunately, this is rather difficult to do in

a model-independent fashion, since the size of the ISR effect is very model-dependent and

depends on many factors: the energy of the collider (Tevatron or LHC), the mass of the

produced particles, the identity of the partons initiating the HS, etc. Therefore, the optimal

method to compensate for the ISR effect will also depend on all of these factors and will need

to be decided on a case by case basis.

For the purposes of the current study, we shall use a simple cut-based approach as

discussed here, postponing the more complete treatment for [60]. To this end, we need to

identify some global property of the ISR and MPI products which would distinguish them

from the HS. Since it is well known that ISR and MPI peak in the forward region, it is

natural to consider the pseudorapidity η as a simple cut variable. The energy distributions

as a function of |η|, for a few representative cases are shown in Fig. 10. We again consider

the processes of gluino pair production (Figs. 10(a) and 10(b)) and associated gluino-LSP

production (Figs. 10(c) and 10(d)). In each case, the gluino decays to 2 jets as in (3.14). We

choose to show the two extreme cases for the mass spectrum considered earlier: mχ = 100

GeV (Figs. 10(a) and 10(c)) and mχ = 400 GeV (Figs. 10(b) and 10(d)). The gluino mass is

still fixed according to the gaugino unification relation (3.16). The black histograms in Fig. 10

represent our previous results from Section 4 without any ISR or MPI effects, while the green

(red) histograms include the effect of ISR (MPI). Finally, the blue histograms include both

the ISR and MPI effects. The plots in Fig. 10 are normalized as follows. For each event, say

the i-th one, we add the energy deposits in all calorimeter towers at a given |η|, then divide

the sum by the total energy Ei observed in the i-th event and the total number of events N ,

and finally enter the result into the corresponding |η| bin. It is easy to see that this ensures

that the final distributions are unit-normalized.

Fig. 10 shows that, as expected, the ISR and MPI effects appear mostly in the forward

region. Therefore, by applying a simple |η| < ηmax cut, we could reduce their impact. Of

course any such rapidity cut would essentially bring us back closer to the transverse quantities

from which we were trying to escape from the very beginning. Furthermore, such a simple-
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Figure 10: Energy distributions as a function of |η|, for some of the SUSY examples considered

earlier: 2-jet gluino decays from gluino pair production with (a) mχ = 100 GeV or (b) mχ = 400

GeV; and from associated gluino-LSP production with (c) mχ = 100 GeV or (d) mχ = 400 GeV. The

color scheme is such that the black histograms correspond to our previous results from Section 4 in

the idealised case without ISR or MPI, while the green (red, blue) histograms include the effect of

ISR (MPI, both ISR and MPI). Here Ei is the total energy measured in the i-th event, and N is the

total number of events. As a result, all distributions shown in the figure are unit-normalized.

minded procedure would introduce an uncontrollable systematic error, which would have to

be estimated on a case by case basis. For example, Fig. 10(b) shows that when the spectrum

is rather heavy, the ISR/MPI effects are relatively small and can probably be safely neglected

altogether, while Figs. 10(a), 10(c) and 10(d) reveal a significant ISR/MPI pollution for a light

SUSY spectrum. One should also keep in mind that our conjecture (4.6) is already subject

to a certain systematic error, whose size sets the benchmark for the ISR/MPI elimination

study. With those caveats, we choose our cut at ηmax = 1.4, which is nothing but the end of

the barrel and beginning of HE/HF calorimeters in CMS. This choice makes good sense from

an experimentalist’s point of view, since the segmentation and performance of the HE/HF
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Figure 11: Unit-normalized distributions of
√

ŝmin(2mχ) and
√

ŝ′min(2mχ) for the SUSY examples

considered in Fig. 10. The color scheme is the same as in Fig. 10. The blue histograms include both

the ISR and MPI effects, and represent the actually measured
√

ŝ′min(2mχ), while the green (red)

histograms include the effects of ISR (MPI) only. All three of those distributions are subject to the

|η| < 1.4 cut discussed in the text. For comparison, we also show our previous results from Section 4,

corresponding to the HS only (without any ISR or MPI effects) and without an η cut. In particular,

the black solid histograms in Fig. 11 represent our previous results for the quantity
√

ŝmin(2mχ),

while the black dotted (yellow-shaded) histograms give the true ŝ1/2 distribution, whose threshold is

the parameter to be measured.

calorimeters are relatively worse to begin with.

Let us now revisit some of the
√

ŝmin distributions from Section 4 and incorporate suc-

cessively the effects of ISR and/or MPI. Fig. 11 shows our results for the same four SUSY

examples from Fig. 10. The green (red) histograms include the effect of ISR (MPI) alone,

while the blue histograms include both the ISR and MPI effects, and thus represent the true

measured quantity
√

ŝ′min(2mχ). All three of those distributions are subject to our |η| < 1.4

cut. For comparison, we also show our previous results from Section 4, corresponding to the

HS only (without any ISR or MPI effects) and without an η cut. In particular, the black

solid histograms in Fig. 11 represent our previous results for the quantity
√

ŝmin(2mχ), while
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the black dotted (yellow-shaded) histograms give the true ŝ1/2 distribution, whose threshold

is the parameter that ideally we would like to measure.

Fig. 11 confirms that the ISR and MPI effects shift the original HS distribution
√

ŝmin

(black histograms) into a harder
√

ŝ′min distribution (blue histograms), even after applying

the η cut. The size of this effect depends on the mass spectrum: it is more pronounced

when the spectrum is light5, as in Figs. 11(a), 11(c) and 11(d). In the worst case scenario of

Fig. 11(c) the location of the s
1/2
min peak shifts by almost a factor of two. On the other hand,

for the best-case scenario of Fig. 11(b) the shift is rather small. By comparing the green and

red histograms, we can also deduce the relative importance of ISR versus MPI. We see that

the two effects are roughly comparable in size, but as a rule, the red histograms are shifted

further along, which suggests that MPI has a somewhat higher impact than ISR, indicating

the importance of understanding the full structure of the underlying event at the LHC. The

general conclusion from Fig. 11 is that our mass measurement method proposed in Section 4

is likely to work much better if the new particle spectrum happens to be relatively heavy.

This assumption is not unreasonable: if the new physics spectrum were too light, then it

might have already been ruled out directly or indirectly, and if not, then due to the higher

production cross-sections, there should at least be sufficient statistics to attempt some sort of

exclusive reconstruction. In this sense, for the case where
√

ŝmin is most likely to be useful,

ISR and MPI are least likely to be a problem.

We are now in a position to repeat our mass measurement analysis from Section 5, with

the inclusion of ISR and MPI, while ignoring the forward calorimetry through an |η| < 1.4

cut. Our results are shown in Fig. 12. Comparing Figs. 8 and 12, we see that the inclusion

of ISR/MPI deteriorates the mass measurement, most notably for light SUSY mass spectra

with mχ ∼ 100−200 GeV. This should not be surprising, given what we have already seen in

Figs. 10 and 11. Nevertheless, for heavier SUSY spectra the precision remains relatively good,

typically on the order of 10%, even for the most challenging cases of associated gluino-LSP

production.

7. Summary and conclusions

Anticipating that an early (late) discovery of a missing energy signal at the LHC (Tevatron)

may involve a signal topology which is too complex for a successful and immediate exclusive

event reconstruction, we proposed a new global and inclusive variable ŝ
1/2
min, defined as follows:

it is the minimum required center-of-mass energy, given the measured values of the total

calorimeter energy E, total visible momentum ~P , and/or missing transverse energy 6ET in the

event. Our variable has several desirable features:

• It is global in the sense that it uses all of the available information in the event and not

just transverse quantities, for example.

5Notice that for a given value of mχ, the relevant mass scale 2mg̃ = 12mχ in Figs. 11(a) and 11(b) is

almost twice as large as the corresponding mass scale mg̃ + mχ̃0

1

= 7mχ in Figs. 11(c) and 11(d).
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Figure 12: The same as Fig. 8, but including the effects of ISR (green), MPI (red), both ISR and

MPI (blue). The variable ŝ′
1/2

min(2mχ) here is calculated with a cut of |η| < 1.4, corresponding to the

coverage of the CMS barrel calorimeter only.

• It is inclusive in the sense that it does not depend on the specific production process,

or particular decay chain. Consequently, it is also very model-independent and does

not require any exclusive event reconstruction, which may be a great advantage in the

early days of the LHC.

• It is theoretically well defined and as such has a clear physical meaning: it gives the

minimum total energy which is consistent with a given observed event. This intuitively

clear physical picture allowed us to correlate it with the mass threshold of the new

particles as in eq. (4.6), which turned out to work surprisingly well. In contrast, it is

generally difficult to correlate a bump in a purely transverse quantity like 6ET or HT to

any physical mass parameter in a model-independent fashion.

In Section 2 we derived a simple formula (1.4) for ŝ
1/2
min in terms of the measured E, Pz

and 6ET . The formula is in fact completely general, and is valid for any generic event shown
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in Fig. 1, with an arbitrary number and/or types of missing particles. Therefore, it can be

applied equally successfully to SM as well as BSM missing energy signals.

In Sections 3 and 4 we identified two useful properties of the ŝ
1/2
min variable. First, its shape

matches the true ŝ1/2 distribution better than any of the other global inclusive quantities

which are commonly discussed in the literature. More importantly, when we create the

ŝ1/2(Minv) distribution with the true value of the invisible mass Minv, its peak is very close

to the mass threshold of the parent particles originally produced in the event. This conjecture,

summarized in eq. (4.6), allows us to obtain a rough estimate of the new physics mass scale, as

a function of the single parameter Minv. For example, in R-parity conserving supersymmetry,

where Minv = 2mχ, we derive a relation between the heavy superpartner mass and the mass

of the LSP, as shown in Fig. 9.

Before we conclude, we should comment on several other potential uses of the ŝ
1/2
min vari-

able. Before we even get to the discovery stage, ŝ
1/2
min(0) can already be used for background

rejection and increasing signal to noise, just like MT2(0) [25]. In particular, it is interesting

to explore the correlations between ŝ
1/2
min and the other global inclusive variables discussed in

Section 3 [61]. While we did not include any SM backgrounds in our SUSY plots, we expect

that the presence of SM backgrounds will not affect either the existence or the location of

the new physics ŝ
1/2
min(0) peak. At large values of ŝ

1/2
min(0), where a new physics signal is most

likely to appear, any SM background will be rather smooth and featureless, so that it can be

safely subtracted away through a side-band method.

Another possible application of ŝ
1/2
min(0) is at the trigger level. In Section 3 we already

saw that ŝ
1/2
min(0) is superior to both HT and 6ET in identifying the scale of the hard scattering.

At the same time, there exist dedicated HT and 6ET triggers, motivated by the sensitivity of

those variables to the relevant energy scale. Given that our variable is doing an even better

job in this respect, we believe that the implementation of a high-level ŝ
1/2
min(0) trigger should

be given a serious consideration.

As we have been emphasizing throughout, a major advantage of ŝ
1/2
min is that it does not

require any explicit event reconstruction and thus it is very model-independent. We should

mention that to some extent, these properties are also shared by the MTGen variable proposed

in [33]. In calculating MTGen, one considers all possible partitions of the visible particles Xi

in the event, thus effectively eliminating the model-dependence which stems from assuming a

particular topology. While MTGen and ŝ
1/2
min are similar in this respect, we believe that ŝ

1/2
min

has three definite advantages — first, it is much, much easier to construct. Second, ŝ
1/2
min

can be applied to extreme asymmetric topologies where the second side of the event yields

no visible particles. A simple example of this sort was the associated gluino-LSP production

considered in Figs. 4, 7, 8(c,d), 9(b) and 12(c,d). Finally, the interpretation of ŝ
1/2
min involves

reading off a peak, while MTGen requires reading off an endpoint. The former is much easier

than the latter: for example, a peak would still be recognizable in the presence of large

backgrounds. In contrast, an MTGen endpoint can fade out due to a number of reasons,

including detector resolution, combinatorial background, etc. On the other hand, MTGen

(and more generally, the MT2 class of variables) is better behaved in the presence of ISR.
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More specifically, the endpoints of the MTGen and MT2 distributions in general do shift in

the presence of ISR, and their explicit dependence on the “upstream” transverse momentum

has to be calculated on a case by case basis [54]. However, the nice feature of both MTGen

and MT2 is that when the test mass m̃χ becomes equal to its true value mχ, there is no such

shift and the endpoint remains intact even in the presence of arbitrary ISR. In contrast, as

discussed in Section 6, ŝ
1/2
min is always affected by ISR to some extent, requiring some sort of

correction.

In conclusion, we reiterate that perhaps the most important advantage of ŝ
1/2
min is that it

is readily available from day one. We are therefore eagerly looking forward to the first ŝ
1/2
min

plots produced with real LHC data.
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